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The q-fields, q-curves, and q-symplectic forms on the quantum hyperplane are 
given by the use of the q-sequences method. With these structures we discuss a 
possible noncommutative Hamiltonian mechanical system and give two 
concrete examples. 

1. INTRODUCTION AND PRELIMINARY REMARKS 

In recent years, an interesting problem in theoretical physics has been 
how to use quantum groups and the methods of noncommutative geometry 
to study possible q-deformations of physical spaces and fields. However, 
difficulties remain, e.g., lack movable coordinates as in ordinary classical 
analysis, etc. For this reason, in Zhong (1993, 1994a,b, 1995a,b) I have 
suggested a new method, a theory of q-sequences, q-analytic functions, and 
noncommutative analysis on a quantum hyperplane. This method has been 
used to study the complete algebraization problem in the implicate order 
theory of Bohm (Zhong, 1995a), quantum group gauge fields and their invari- 
ants (Zhong, 1993, 1994a), nonlinear realizations of the quantum groups 
(Zhong, 1994b), and the associated Riemann-Hilbert problem (Zhong, 
1995b). In this paper, the method is used in classical Newtonian mechanics, 
i.e., a noncommutative Hamiltonian mechanical system is given. For this 
reason, we must first define the vector fields, the form fields, the curves (the 
orbits of particles in a noncommutative phase space), and the symplectic 
form on a quantum hyperspace. 

t Department of Physics, Liaoning Normal University, Dalian 116029, Liaoning, China. 

2527 

0020-7748/96/1200-2527509.50/0 �9 1996 Plenum Publishing Corporation 



2528 Zhong 

The relations between quantum group theory and classical mechanics 
have been considered for some single-particle cases (e.g., Aref 'eva and Volov- 
ich, 1991; Caban et al., 1994). In this paper a more general method in view 
of the q-sequences theory is given. 

For the sake of simplicity, in this paper we only consider the two- 
dimensional case, which corresponds to the one-dimensional motion of single 
particles; the corresponding quantum group is GLq(2). However, the results 
can be extended to the high (even)-dimensional case, which will be discussed 
elsewhere. According to the scheme of Manin (1988), the so-called "coordi- 
nates" of a quantum hyperplane N2 are defined as the generator set (x, y) of 
a unital associative algebra on a field (in this paper it is the real field RI), 
with the commutation relation 

xy  = qyx (1.1) 

where the real deformation parameter is q e (0, 1]. On the quantum hyperplane 
~2 the covariant differential calculus is (Wess and Zumino, 1990) 

d = dx O~ + dy Oy, d 2 = 0 (1.2a) 

d(fg)  = (d f )g  + f ( d g )  (l.2b) 

d(t~ ̂  Cp) = (d&) ̂  ~, + (-l)*t~ ^ d@ 

where t~ is a k-form. The commutation relations are 

d.,c ̂  dy = 

X d x  = q 2 d x ' x ,  

y dx = q dx .  y, 

Oar = 1 + q2x O x + (q2 _ l)y Oy, 

Oyx = qx Oy, 

l 
O~ dx = -~ dx Ox, 

q 

_ l  dy ^ dx  (l.3a) 
q 

x d y  = q d y . x  + (q2 _ I) dx .y  (1.3b) 

y dy = q2 d y . y  

O~y = qy O, (1.3c) 

Oyy= 1 + q2y Oy 

1 
O dy = q ay ox 

1 
Oily = ~ dy Oy + (q2 _ l)dx O~ 

tt 

(l.3d) 

1 
OxOy = q OyO x (l.3e) 

The concrete actions of the quantum partial derivative operators are 

0x(x~y,,) = q2,[m]er,~-ly~ (1.4) 

ay(X y = q"[n]ce'.V'-' 
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where m and n are nonnegative integers and the q-number is given by [m]q 
= (q2m _ 1)/(q2 _ 1) = q2m-2 -b q2m-4 -b "'" -I- 1. 

A matrix in the quantum group GLq(2) is given by 

M = ( M j ) = I a  b] ( i , j =  1,2) 

ab  = qba,  ac  = qca, a d  - da = ( q  - ~ ) b c  

bc = cb, bd  = qdb,  cd  = qdc  

The matrix M satisfies the Yang-Baxter relation 

Mtm2/~t2 =/~I2MIM2 

where corresponding to GLq(2), the Yang-Baxter matrix/~ is 

0.5) 

0.6) 

= (R~t) = q - l lq  1 1 0 (i' j '  k, l = 1, 2) (1 .7 )  

0 0 

From equation (1.6), all commutation relations in (1.3) are covariant under 
the following transformations (x I = x, x 2 = y, ~i  = ~xi): 

2 

x ~ ---> x 'i = ~ Mikx ~ (l.8a) 
k = l  

2 

dx i ---> dr 'i = ~ M~/x k (1.8b) 
k = l  

2 

Oi--'> O~ = E [(Mt)-t]kiOk ( 1 . 8 C )  
k = l  

where M~ commutes with x k, d~, and Ok, and M t is the transposed matrix. 

2. q-SEQUENCES, q-ANALYTIC FUNCTIONS, AND q-CURVES 

I f f  = f(~l . . . . .  ~n) is a real function of n real variables ~m, which is 
analytic at the neighborhood of the origin, then it has the standard power 
series form 

N 

f = ~ N.W ~ f (  . . . .  0) 
N=O m=l  
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i . e . ,  

,~ (mr + " "  + mn)! 
f = L.. f m , z  . . . . . .  fglm'~2"2 . . .  ~2" 

mt . . . . . . .  = 0  m l ! m z ! ' " m n !  
(2.1) 

where the sum is over all nonnegative integers (m~ . . . . .  m,), and 

O( ml +" " " +ran) 

fm,...m. = 0~ '~ ' . . .  0 ~  . f ( O  . . . . .  O) 

A q-sequence corresponding to the real analytic function f is defined as a 
set {amtm2."m,,} consisting of finite or infinite elements, in which there are 
the following structures: 

(i) Some algebraic structures including the interior commutation relations 
within this q-sequence itself, and the combination of commutation relations 
between this q-sequence and other q-sequences, etc. These algebraic structures 
will be determined by some requirements, especially the so-called q-differen- 
tial equations (Zhong, 1995a,b). 

(ii) When q ---> 1, the above algebraic relations must change into some 
relations among the real numbers fml.",n,,, especially the algebraic relations 
which determine a power series solution of the corresponding differential 
equations. Now we take 

lim amlm2. . .mn = fmlm2. . .ra n 
q-el 

and if (kl . . . . .  kn) are some n nonnegative integers such that )~v..k, = 0, 
then we take a~q...kn = 0 directly. In addition, two q-sequences are equal if 
and only if they are the same about (i) and (ii). 

In this paper we only discuss the case of n --< 2. For a q-sequence 
{amain2} we can write out a formal power series 

[ml -F- m2] q] 
fq(x, y) = aralm2Xmly  m2, 

ml. =0 [ m l ] q [ [ m 2 ] q [  
(x, y) �9 c~ 2 (2.2) 

where the q-factorial is [m]q! = [m]q[m - 1]q - . .  [l]q. We call fq a q-analytic 
function on the quantum hyperplane ~2. Evidently, the sum, the product, the 
multiplications by numbers, especially the quantum derivatives of arbitrary 
order determined by (1.4), etc., of q-analytic functions still are q-analytic 
functions. 

In order to define a q-curve in the quantum hyperplane ~2, we introduce 
two new q-analytic functions as follows: Let t be a real parameter and {an}, 
{bin} two q-sequences; then we write two q-analytic functions of t as 
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x( t )  = 1 amtm ' y( t )  = ~ 1 (2.3) --In]q! m=0 n=0 

Let the commutation relation between {a,.} and {b.} be 

a, ,b .  = qb,a , ,  (m, n = 0, 1 . . . .  ) (2.4) 

Therefore we have 

x(t)y( t)  = qy( t )x( t )  (2.5) 

The pair (x(t),  y(t))  can be explained as a q-curve in the quantum hyperplane 
~2. Notice that when t = 0, then x(0) = a0, y(0) = b0, and aob0 = qboao; 
therefore (a0, bo) is a "fixed point" in ~2, and the above q-curve passes 
through it. As for the q-derivatives of  these q-analytic functions, if we take 
the similar q-derivative, i.e., 

Dq(t n) - (q2t)n - t n 
q2t - t - [n]qt n-t (2.6) 

then we can obtain all derivatives of x(t)  and y(t), e.g., 

~(t) -- Dqx(t) = 
1 

,=0 ~ a,+lt" (2.7) 

From equation (2.4), the commutation relation (2.5) still holds for the q- 
derivatives of arbitrary order of x(t)  and y(t) ,  in particular 

Yc(t)p(t) = qp(t)Yc(t) (2.8) 

3. q -FIELDS AND q - S Y M P L E C T I C  F O R M S  

Suppose that the commutation relation between two q-sequences {Am~ } 
and {Bkl} is (Zhong, 1993) 

q-nkAmnBkt = q l - m B k l A ,  m (3.1) 

From the commutation relation (1. l), it is known that the commutation relation 
between the q-analytic functions 

[m + n]q! 
fq(x ,  y)  = A ~  

ram=O [m]q![n]q[ 

gq(x, y) = ~ [k + l]q! BklX~y t 
k,l=O [k]q![l]q! 

is 

fqgq = qgqfq (3.2) 
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fq and gq are called the components of the two-dimensional standard q-vector 
field V(x, y), which we denote by the brackets V = {V ~, V r} = {fq(x, y), 
gq(x, y)}. Here the so-called "components" concern some coordinate bases 
(ex, ey). Let 

tel 1 
8 = Le T ezZj 

be a quantum matrix in GLq(2) as in (1.5); now we take ex = (el, ez t) and ey 
= (e~ z, ez 2) as the coordinate bases, and for these bases V is spanned as 

V(x, y) = VX(x, y)ex + VY(x, y)ey (3.3) 

In fact, here V corresponds to a q-analytic function pair ~q, ~q) obeying the 
commutation relation (1.1), since equation (3.3) can be written in Manin's 
(1988) form as 

= e~]ffq~ 
( ~ )  (e i e~J~gq] (3.4, 

Generally, whether V ~, VY satisfy (1.1) or not, V = V~ex + VYey is called a 
q-vector field on ~2; and if VxV y = qVrV ~, then V is called a standard q- 
vector field on ~2. From equations (2.3) and (2.5), 

T(t) = {R(t), y(t)} = X(t)e~ + y(t)ey (3.5) 

is a standard q-vector corresponding to t. We call T(t) the tangent vector of 
the q-curve (x(t), y(t)). 

If M E GLq(2) is a q-matrix as in equation (1.5), then the basic vectors 
e" = (ae] + beT, ae~ + be~) and ey = (cel + deT, ce~ + de~) correspond to 
the q-matrix MB ~ GLq2(2). It is easily seen that for this basic system, the 
components V are 

V 'i = M~tV x + M~VY (V '~ = V ':j) (3.6) 

Therefore V indeed has some vector properties. 
Let cb ~, 6P' denote the dual bases, i.e., we regard ~i and ej as two operators 

that act on each other such that 

~tli(ej ) = ~ : ej (~i)  (i, j = x, y )  (3.7) 

If ~x(x, y) and D~(x, y) are two q-analytic functions, ~(x, y) = &q~x(X, y) 
+ ~vf~y(x, y) is called a q- l-form field on <~2. If and only if ~x and D.y satisfy 
a commutation relation as in (l.3e), i.e., 
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[ l~ l  r = 1 l~.llx (3.8) 
q 

then ~(x ,  y) is called a standard q-l-form field on the quantum hyperplane 
qg2. The most interesting case for us is when this q-l-form field is generated 
by a q-analytic function and the q-differential calculus as in (1.2). For this 
reason, a q-analytic function 

[m + n]q! 
Hq(x, y) = (x, ~2 m~=O [m]q![nlq! hm~x~Y~' Y) �9 

is called a standard q-analytic function if and only if OxH q and OyI-Iq are just 
the components of a standard q-l-form field on ~2, i.e., 

axHq O f  q = ! ayn  q axHq (3.9) 
q 

In particular, if we take H q = x and y, then we obtain dx = ~x and dy = 
tT~, respectively. This means that if Hq is a standard q-analytic function, then 
dH q is a standard q-l-form field on ~2- From equation (3.9), Hq is a standard 
q-analytic function if and only if there are the following interior commutation 
relations in the q-sequence {hm,}: 

[m -b n + l]q[ [k + l + l]q! -l-ml 
tt~2n+kt ~-nkl"Ktl tim+ l,nrik,l+ _ q hk.t+ lhm+ t., ) 

m+k=R [m]q! [/7.]q! [k]q[ [l]q[ 
n+l=S 

= 0,  R, S = 0,  1, 2 . . . .  ( 3 . 1 0 )  

It is easily seen that the GLq(2) transformation rule of the components of a 
q-l-form field is 

1~. -~ II[ = [(M')-I]fIIx + [(Mt)-l]{l'~y, i = x, y (3.11) 

By the use ot' the actions of the operators defined in equation (3.7), we 
can define the action of a q-vector (q- l-form) field on a q- l-form (q-vector) 
field; the results are 

fi(V) = ~xV ~ + l~yV' (3.12) 

v(f i)  = w a x  + wa, .  

Notice that this is different from the classical case in that I~(V) and V(I~) 
in general are not equal and may not necessarily be standard q-analytic 
functions unless q --* 1. However, they are invariants under the GLq(2) 
transformations. 
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Now we define the wedge product of two q-l-form fields by 

{b i A ~ = ~ i |  ~ |  (3.13) 
q 

where/~ is the Yang-Baxter matrix in (1.7). By the use of the Yang-Baxter 
relation (1.6), it is easily seen that equation (3.13) is covariant under the 
following GLq(2) transformation: 

~i __> ~,i  = Mi~ l  + M,;&2, ~i = ~# (3.14) 

and we have 

1 ~ ^ {zjY = - -  ar ^ ~x (3.15) 
q 

Next, according to equation (1.2), the exterior differential of a q-l-form field 
l'l = t~q-l~ + a~'lly can be written as 

d ~  = ~ A d~-lx + C~Y ̂  d~y (3.16) 

From equation (1.7) the details of  equation (3.13) are 

^ = 1 | a , ,  - ! | a,x 

q q 

r A {b x = {by | ~x _ _1 &x | 
q 

(3.17) 

From the above, we have obtained the GLq(2)-covariant q-symplectic forms; 
when q --> 1 they change into the symplectic forms on ordinary phase space. 

4. NONCOMMUTATIVE HAMILTONIAN MECHANICS 

Suppose that H = H(x, p) is an ordinary Hamiltonian function on the 
ordinary phase space (x, p), where x is the generalized coordinate and p is 
the generalized momentum. H must be real analytic in the neighborhood of 
the origin. The corresponding q-analytic function is 

Hq(x,P) = ~ [m + n]q! hm,rxmp n, x , p  E C~ 2 (4.1) 
re.n=0 [m]q! [n]q! 

where we still use the notations x, p; however, (x, p) is a point in ~2, xp = 
qpx, If and only if q ---> 1 do x and p change into ordinary numbers. In 
particular, we require that Hq must be a standard q-analytic function, i.e., 
the q-sequence {hm~} obeys equation (3.10). This means that the interior 
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commutation relations in { h,,~ } have been determined. If (k,/) is a nonnegative 
integer pair such that 

~(k+~ 
OxkOpt H(O, O) = 0 

then we directly take hkl = 0. 
Now, we take the q-symplectic form on the q-phase hyperplane ~2 as 

(notice the order) 

1~ = Co p ^ (7) x (4.2) 

where the wedge product is defined by equations (3.13) and (3.17). The orbit 
of a particle in the q-phase hyperplane (~2 is defined as a q-curve (x(t), p(t)) 
in %2 (see Section 2, and let y = p), which must generate a Hamiltonian 
vector U = {~(t), p(t) } concerning the q-symplectic form 1") in equation (4.2), 
i.e., U satisfies the following equation: 

•(' ,  U) = dHq (4.3) 

where d is the q-differential defined by equation (3.16). Therefore, from 
equation (3.7) we have 

YC(t) = ot, nq(x, p) 

p(t) = _ 1  Oxnq(x ' p) (4.4) 
q 

x(t) = ~_j 
l 

m=0 ~ arntrn 

p(t) = 
flgJ 

1 
,=o ~ b,t" 

This is the Hamiltonian equation in noncommutative mechanics, where Oi (i 
= x, y) is the quantum partial derivative, with the actions as in (1.4). Since 
Hq(x, p) is a standard q-analytic function, the commutation relations (3.9) 
and (2.8) are consistent. 

Now, from the ordinary Hamiltonian function H(x, p) the real orbit x 
= x(t) and p = p(t) can be regarded as known, which means that the real 
numbers limq_,l am and limqol b, are known. Therefore, to solve the q- 
differential equation (4.4), which is written in detail as 

~ ~q,  am§ 
_ _  = ~ [ k + / +  l]q! 

m=O [ k,l=O [k]q[ [l]q[ qkhk't+l 

) • a /  ~ b,t* (4.5) 
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1 = [k + l + 1]q! 
~ bm+x~ = ~ q2t-lhk+,.t 

m=0 k.l=O [k]q! [l]q! 

1 \k/oo 1 bsP) t 
/ 

is equivalent to determining the combination of the commutation relations 
between the q-sequences {hm,} and {ar}, {b.,} from equation (4.5). We only 
need to contrast the coefficients of the terms t M (M = 0, 1, 2 . . . .  ) on the 
right side of equation (4.5) with those of the left side; then the results can 
be directly written out. However, the general form is very tedious, and here 
there is no need to write out it. 

The above method can be used for any one-dimensional single-parti- 
cle system. 

5. E X A M P L E S  

5.1. Free  Particle  with M a s s  M 

In this case, 

;p__2 ~ 
tI(x, p) 2M 

I 
Hq(x, p) = ~ h~ 

The q-Hamiltonian equation is 

~ 1 
~__o [--~q.v a,,+l t" 

1 
m ~ _ _ 0 ~  bin+lIra 

Therefore we have 

a0 = Xo, 

b0 = P0, 

= h02 n__~o [-~q.v bnt" 

= 0  

(5.1) 

(5.2) 

al = ho2bo = ho2P0, a2 = a3 . . . . .  0 (5.3) 

bt = b2 . . . . .  0 

This means that the q-orbit is a noncommutative straight line passing through 
(x0, Po) in the quantum phase hyperplane ~2, 

x(t) = Xo + ho2Pot, p(t) = Po (5.4) 

According to equations (2.4) and (5.3), we obtain the commutation relations 
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xoPo = qpoxo, h02Po = qpoho2 (5.5) 

Since limq__,~ ho2 = l /M, ho2 is related to some "noncommutative mass," 

5.2. N o n c o m m u t a t i v e  O n e - D i m e n s i o n a l  H a r m o n i c  Osc i l l a tor  

In this case, the classical Hamiltonian function is 

1 1 2 
H(x, p) = ~ MOx 2 + - ~  p (5.6) 

where the frequency 0 is a nonnegative real number Then the q-Hamiltonian 
function is 

1 1 
Hq(x' P) = _ _  ~ h2~ + [2]q! h~ (5.7) 

and the q-Hamiltonian equation is 

m=~O [2]q'~"~ am+'tm= ho2 n=O ~ 1 b,t ~ (5.8) 

1 1 1 
_ _ ~  b"+lts = --q h2~ n=o ~ a,t" 

ttl=0 

In addition, from equation (3.10) we know that ho2 must commute with h2o 
Thus by equation (5.8) we obtain the following recurrence relations: 

1 
am+l = ho2bra, a,~+l = - -  ho2h2oam-i (5.9) 

1 
b,n+l ---- ---- h20am, bm+t = ho2h20b,,-, (m = 1, 2 . . . .  ) 

q q 

According to equation (2.4), we see that a natural supposition is that ho2h20 
commute with all a,. and b,, and in this case we obtain the solution 

1 
x(t) = ao cosq(,f~t) + ~ a  h02b0 sinq(v/~t) (5.10) 

y(t) = bo COSq(,r 1 sinq(x/~t ) (v/'~) q h20ao 

where we have formally written ct = (l/q)ho2h20, and the q-sine and q-cosine 
functions are defined by 

Sinq~ = ~ 1 (_l),n~2m+ t (5.11) 
, . =o  [2m + l]q! 

COSq~ = m~=O 1 1)mi~2.~ 
= [2m]q! ( -  
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is a formal variable. The commutation relations are 

aob o = qboa o 

ho2h20 = h20h02 (5.12) 

[ho2h20, ao (or bo)] = 0 

From limq_~l ot = 0 2, limq~j hoe = 1/M, and limq_~l h20 -- M02, therefore, 
the system given by (5.10) is a noncommutative one-dimensional harmonic 
oscillator; v/~ corresponds to a "frequency" and h02, h20 are related to some 
"noncommutative mass." 
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